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Abstract——�-Amino-3-hydroxy-5-methyl-4-isoxazo-
lepropionate receptors (AMPARs) are of fundamental
importance in the brain. They are responsible for the
majority of fast excitatory synaptic transmission, and
their overactivation is potently excitotoxic. Recent
findings have implicated AMPARs in synapse forma-
tion and stabilization, and regulation of functional
AMPARs is the principal mechanism underlying syn-
aptic plasticity. Changes in AMPAR activity have been
described in the pathology of numerous diseases, such
as Alzheimer’s disease, stroke, and epilepsy. Unsur-
prisingly, the developmental and activity-dependent
changes in the functional synaptic expression of these

receptors are under tight cellular regulation. The mo-
lecular and cellular mechanisms that control the
postsynaptic insertion, arrangement, and lifetime of
surface-expressed AMPARs are the subject of intense
and widespread investigation. For example, there has
been an explosion of information about proteins that
interact with AMPAR subunits, and these interactors
are beginning to provide real insight into the molecu-
lar and cellular mechanisms underlying the cell biol-
ogy of AMPARs. As a result, there has been consider-
able progress in this field, and the aim of this review is
to provide an account of the current state of knowl-
edge.

I. Introduction

A. Classes of Glutamate Receptors

The amino acid glutamate is the major excitatory
neurotransmitter in the mammalian central nervous
system (CNS1), and it exerts its physiological effects
by binding to a number of different types of glutamate
receptors (GluRs). Glutamate receptors can be divided
into two functionally distinct categories: those that
mediate their effects via coupling to G-protein second
messenger systems, the metabotropic glutamate re-
ceptors (mGluRs) and ionotropic ligand-gated ion
channels (Simeone et al., 2004). Based largely upon

the work of Watkins and coworkers (Watkins, 1981,
1991; Watkins et al., 1981), the ionotropic glutamate
receptors have been separated into three distinct sub-
groups based upon their pharmacology (for related
reviews, see Dingledine et al., 1999; Barnes and
Slevin, 2003; Mayer and Armstrong, 2004). These are
the �-amino-3-hydroxy-5-methyl-4-isoxazolepropionic
acid (AMPA) receptors, N-methyl-D-aspartate (NMDA)
receptors, and kainate (KA) receptors. However, it is
important to note that AMPARs are responsive to
kainate.

The pharmacologically isolated families of receptors
were subsequently found to be encoded by distinct gene
families. AMPARs comprise four subunits named GluR1
to GluR4 (also called GluRA–GluRD). The GluR1 sub-
unit was first cloned after screening an expression li-
brary (Hollmann et al., 1989), and subsequent cDNA
homology screens revealed the remaining GluR2,
GluR3, and GluR4 homologs (Boulter et al., 1990; Kein-
anen et al., 1990; Nakanishi et al., 1990; Sakimura et al.,
1990).

B. AMPA Receptor Topology

The schematic topology of an AMPAR subunit is illus-
trated in Fig. 1. This structure has been based largely on
biochemical investigations as well as homology between
the AMPARs and prokaryotic amino acid receptors (re-

1Abbreviations: CNS, central nervous system; GluR, glutamate
receptor; mGluR, metabotropic glutamate receptor; AMPA, �-amino-
3-hydroxy-5-methyl-4-isoxazolepropionic acid; NMDA, N-methyl-D-
aspartate; KA, kainate; AMPAR, AMPA receptor; TM, transmem-
brane; KAR, KA receptor; NMDAR, NMDA receptor; PDZ,
postsynaptic density 95-discs large-zona occludens 1 domain; Dlg,
discs large; CaMK, calcium-calmodulin-dependent protein kinase;
PKC, protein kinase C; PKA, protein kinase A; LTP, long-term
potentiation; LTD, long-term depression; SAP, synapse-associated
protein; ABP, AMPAR binding protein; GRIP, glutamate receptor-
interacting protein; PICK1, protein interacting with C kinase 1;
PSD, postsynaptic density; SCC, Schaffer collateral-commissural;
GFP, green fluorescent protein; NSF, N-ethylmaleimide-sensitive
factor; AP2, clathrin adaptor protein 2; PPI, protein phosphatase I;
MAGUK, membrane-associated guanlylate kinase; TARP, trans-
membrane AMPAR regulatory protein; Narp, neuronal activity-reg-
ulated pentraxin.
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viewed in Paas, 1998). The molecular architecture of
each AMPAR subunit (GluR1–4) is very similar; each
comprises �900 amino acids and has a molecular weight
of �105 kDa (Rogers et al., 1991). There is approxi-
mately 70% sequence homology between genes encoding
each subunit, although genes may undergo alternative
splicing in two distinct regions, resulting in subunits
that have either long or short C termini, and flip or flop
variants in an extracellular domain (for review, see
Black and Grabowski, 2003).

1. The N Terminus. Each subunit includes an extra-
cellular N terminus, four hydrophobic domains (TM1–
4), and an intracellular C terminus (Fig. 1). In eu-
karyotes, the N terminus contains the N-terminal
domain of �400 amino acids and a �150 amino acid
ligand-binding core. The N-terminal domain is also
known as the X-domain because of its unknown function
(Kuusinen et al., 1999). Suggestions for X-domain func-
tion include receptor assembly, allosteric modulation of
the ion channel, and binding of a second ligand. The
X-domains of GluR4 form dimers in solution (Kuusinen
et al., 1999) and confer specificity for AMPARs, as op-
posed to KARs upon coassembly with other subunits
(Leuschner and Hoch, 1999). However, deletion of the
entire X-domain of GluR4 did not alter the function of
homomers expressed in human embryonic kidney 293
cells, indicating that it is not involved in homomeric
assembly of this subunit (Pasternack et al., 2002). The
structure of this part of AMPARs is suggestive of a

ligand-binding site, but no endogenous ligands have
been found to bind here, although Zn2� modulates at a
similar site on NMDARs (Mayer and Armstrong, 2004).
Intriguingly, the N terminus of GluR2 is involved in
dendritic spine morphogenesis, perhaps through a re-
ceptor-ligand complex (Passafaro et al., 2003).

The ligand-binding core of AMPARs confers pharma-
cological specificity to the receptors; indeed, swapping
the domains of AMPA and KARs swapped both their
affinity for the ligand and desensitization properties and
proved that this is the glutamate binding site (Stern-
Bach et al., 1994, 1998). The structures of the ligand
binding cores of GluR2 and GluR4 have been studied
intensively (Jayaraman et al., 2000; Kubo and Ito, 2004;
McFeeters and Oswald, 2004), and this is the only part
of any AMPAR to be crystallized so far (Armstrong et al.,
1998). For GluR2, the ligand-binding core has been crys-
tallized with various pharmacological agents (Johansen
et al., 2003). This approach gives an insight into the
mode of action of some AMPAR agonists and antagonists
and promises to be a valuable tool for the rational design
of future drugs (reviewed in Stensbol et al., 2002; Mayer
and Armstrong, 2004).

2. Hydrophobic Regions. The transmembrane orien-
tation of the AMPAR subunits was initially elucidated
by the use of specific antibodies, N-glycosylation pat-
tern, and proteolytic sites (Molnar et al., 1994; Wo et al.,
1995). Together, these studies demonstrated that the
mature N terminus is expressed on the exterior surface
of the neuron (Hollmann et al., 1994; Bennett and
Dingledine, 1995; Seal et al., 1995), and subsequent
work showed that the TM1, TM3, and TM4 regions are
all transmembrane spanning domains, whereas TM2
forms a hairpin loop on the intracellular side of the cell
membrane (see also Wo and Oswald, 1994) (Fig. 1).
Similar to K� channels, the re-entrant loop contributes
to the cation pore channel (Kuner et al., 2003), although
the specificity of AMPARs differ in that they gate Na�

and Ca2� in preference to K�, perhaps because of a
comparatively larger pore size (Tikhonov et al., 2002).

3. The Intracellular C Terminus. The intracellular C
terminus of eukaryotic AMPARs has been shown to be
the interaction site for a range of different proteins,
many of which are involved in the receptor trafficking
(reviewed in Henley, 2003) and synaptic plasticity (re-
viewed in Malenka, 2003; Sheng and Hyoung Lee, 2003).
The functions of AMPAR interactors are under intense
scrutiny and will be discussed in greater detail below.

C. Pharmacology

AMPARs gate Na� and Ca2� in response to ligand
binding, with conductance and kinetic properties of the
receptor depending on the subunit composition (Mat
Jais et al., 1984; Hollmann et al., 1991; Jonas, 1993).
This influx of ions causes a fast excitatory postsynaptic
response, and the Ca2� component can also activate
second messenger pathways (Michaelis, 1998), includ-

FIG. 1. Schematic showing the topology of an AMPA receptor subunit.
Each subunit consists of an extracellular N-terminal domain, four hydro-
phobic regions (TM1–4), and an intracellular C-terminal domain. The
ligand-binding site is a conserved amino acid pocket formed from a
conformational association between the N terminus and the loop linking
TM3 and TM4. A flip/flop alternative splice region and R/G RNA editing
site are also present within the TM3/TM4 loop. TM2 forms an intracel-
lular re-entrant hairpin loop which contributes to the cation pore channel
and is also the site for Q/R RNA editing in the GluR2 subunit. The
intracellular C terminus contains phosphorylation sites and conserved
sequences that have been shown to interact with a number of intracel-
lular proteins, for example, PDZ domain-containing proteins and the
ATPase NSF.
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ing many protein kinases (Wang et al., 2004); indeed,
AMPARs have been reported to have metabotropic as
well as ionotropic properties (Wang and Durkin, 1995;
Wang et al., 1997). For researchers investigating the
function of AMPARs in in vitro preparations, it may also
be interesting to note that AMPARs may be potentiated
by serum factors (Nishizaki et al., 1997).

There are many drugs available that act on AMPARs,
and listing them is beyond the scope of this review (but
see Stensbol et al., 2002; Stone and Addae, 2002; Weiser,
2002; McFeeters and Oswald, 2004; O’Neill et al., 2004;
Stromgaard and Mellor, 2004).

D. Post-Transcriptional Modification

1. Splice Variants. All four AMPAR subunits un-
dergo alternative splicing in an extracellular region N-
terminal to the fourth transmembrane domain to give
“flip” and “flop” splice variants (Sommer et al., 1990)
(see Fig. 1). This modifies the channel’s kinetic and
pharmacological properties with flip splice variants de-
sensitizing four times slower than flop (Mosbacher et al.,
1994; Koike et al., 2000) and confers different sensitivity
to allosteric modulators cyclothiazide (Partin et al.,
1994; Kessler et al., 2000), 4-[2-(phenylsulfonylamin-
o)ethylthio]-2,6-difluoro-phenoxyacetamide (Sekiguchi
et al., 1997, 1998), zinc (Shen and Yang, 1999), and
lithium (Karkanias and Papke, 1999), although affinity
to AMPA is unchanged (Arvola and Keinanen, 1996).
Expression levels of the different splice variants is re-
gion and cell-type specific (Sommer et al., 1990; Fleck et
al., 1996; Lambolez et al., 1996) and developmentally
regulated, for example, in the cerebellum (Mosbacher et
al., 1994), as well as modified by physiological insults
(Zhou et al., 2001b), lesions (Pires et al., 2000), and
disease (Seifert et al., 2002, 2004; Tomiyama et al.,
2002). This means that the number of permutations of
AMPARs is very large giving a potential to fine-tune the
kinetic properties of the channel.

Further to the flip and flop splice variants, GluR1, -2,
and -4 can also undergo alternative splicing in the C
terminus to give “long” isoforms (Gallo et al., 1992;
Kohler et al., 1994); however the “short” isoform of
GluR1 has not been reported. The short isoform of
GluR2 is the most abundant, accounting for over 90%
of total GluR2 (Kohler et al., 1994), and the long form
of GluR4 is predominant (Gallo et al., 1992). GluR3 has
a short C terminus due to a lack of splice sites in the C
terminus. The alternative splice variants are able to
bind different interacting proteins because the PDZ
binding motif is only present in the short form (Dev et
al., 1999). In consequence, much of the work in the field
of AMPAR interactors has focused on the short form of
GluR2.

2. RNA Editing. The genomic DNA of the GluR2
subunit of AMPARs contains a glutamine (Q) residue at
amino acid 607. However, the vast majority of neuronal
cDNA contains an arginine (R) at this position and oc-

curs via a process of nuclear RNA editing (Sommer et al.,
1991; Cha et al., 1994; Seeburg et al., 1998; Seeburg and
Hartner, 2003). The edited residue is found in the chan-
nel-forming segment of the receptor, and the amount
and presence of the edited subunit alters the kinetics
and divalent ion permeability of the resulting receptors
(Burnashev et al., 1992, 1995; Geiger et al., 1995), al-
though it is not linked to receptor desensitization (Thal-
hammer et al., 1999). GluR2(R)-containing AMPARs
have a low permeability to Ca2� and low single-channel
conductance because of the size and charge of the amino
acid side chain in the edited form (Burnashev et al.,
1992, 1996; Swanson et al., 1997). Nonetheless,
GluR2(R)-containing AMPARs can still participate in
intracellular Ca2� signaling (Utz and Verdoorn, 1997)
and can be trafficked in a Ca2�-dependent way (Liu and
Cull-Candy, 2000). Furthermore, editing at this position
has been shown to regulate endoplasmic reticulum re-
tention (Greger et al., 2002) and tetramerization of
AMPARs (Greger et al., 2003). Edited and unedited
forms of the receptor have different sensitivity to the
pharmacological agents Joro Spider toxin and adaman-
tine derivatives (Meucci et al., 1996; Magazanik et al.,
1997; McBain, 1998), and editing at this position is
developmentally, region- and cell-specifically regulated
(Lerma et al., 1994; Nutt and Kamboj, 1994). Indeed,
changes in the levels of editing occur during differenti-
ation of neurons and glia (Meucci et al., 1996; Lai et al.,
1997).

Because of the link between calcium influx and exci-
totoxicity, changes in the amount of edited GluR2 have
been implicated in a number of diseases including
schizophrenia, Huntington’s disease, Alzheimer’s dis-
ease (Akbarian et al., 1995), epilepsy (Brusa et al.,
1995), and malignant glioma (Maas et al., 2001) with
most research being focused on amyotropic lateral scle-
rosis (Takuma et al., 1999; Kawahara et al., 2003b,
2004), although the process is not involved in ischemia
(Kamphuis et al., 1995; Paschen et al., 1996; Rump et
al., 1996; but see Tanaka et al., 2000). Editing at this
position is not essential for brain development (Kask et
al., 1998), but mice have neurological deficits when ed-
iting does not take place (Feldmeyer et al., 1999).

Further, to the Q/R site of GluR2, GluR2, -3, and -4
may be edited at another site, the R/G site, in a region
that immediately precedes the flip/flop splice module in
the N terminus of the molecule (Lomeli et al., 1994; Fig.
1). This modification changes the desensitization and
resensitization of the resulting AMPAR (Lomeli et al.,
1994; Krampfl et al., 2002) and may be involved in
epilepsy (Vollmar et al., 2004) and, in contrast to the Q/R
site, ischemia (Yamaguchi et al., 1999).

The RNA-dependent adenosine deaminase 2 carries
out RNA editing of AMPARs (Higuchi et al., 2000;
Ohman et al., 2000), and like the edited and unedited
forms of AMPAR subunits, expression levels of the en-
zyme are developmentally and regionally regulated. In-
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deed, it has been shown that RNA-dependent adenosine
deaminase 2 abundance regulates levels of edited GluR2
(Kawahara et al., 2003a).

E. Post-Translational Modification

1. Glycosylation. All AMPARs have sites for aspara-
gine (N)-linked glycosylation (Hullebroeck and Hamp-
son, 1992; Breese and Leonard, 1993; Keinanen et al.,
1994) in the extracellular domains of the protein, with
two conserved sites in the S1 domain that forms part of
the ligand-binding domain (Arvola and Keinanen, 1996;
reviewed in Standley and Baudry, 2000; Pasternack et
al., 2003). The functional consequence of the addition of
these oligosaccharides is not clear. Inhibition of glyco-
sylation with tunicamycin was found to prevent func-
tional expression of recombinant AMPARs (Musshoff et
al., 1992; Kawamoto et al., 1994), but later the drug
itself was reported to inhibit AMPARs regardless of
glycosylation state (Maruo et al., 2003). Studies of re-
combinantly expressed S1-S2 domain fusion proteins
show that this form of post-translational modification
does not affect the ligand-binding site (Arvola and Kein-
anen, 1996; Pasternack et al., 2003), however, the de-
sensitizing lectin concanavalin A potentiates AMPAR
currents by binding to these carbohydrates, with GluR2
remaining unaffected (Everts et al., 1997). This suggests
that glycosylation of different AMPAR subunits may
have different functional effects. It appears that only
surface and synaptically expressed AMPARs possess the
mature glycosylated form (Hall et al., 1997; Standley et
al., 1998), and the exact nature of the oligosaccharides
involved has been identified (Clark et al., 1998). It is
likely that this protein modification is involved in the
maturation and transport of the receptor or could pro-
tect AMPARs from proteolytic degradation. Indeed, the
aberrant glycosylation of GluR3 can lead to proteolysis
and release of an autoimmunogen leading to Rasmus-
sen’s encephalitis (Gahring et al., 2001).

2. Phosphorylation. Phosphorylation of ligand-gated
ion channels can regulate the properties of the channel,
its intermolecular interactions, and trafficking of the
protein (reviewed in Swope et al., 1999). The regulation
of AMPAR phosphorylation adds a further complex level
of receptor modulation beyond subunit composition,
splice variants, and other post-translational modifica-

tions (Carvalho et al., 2000; Gomes et al., 2003). Phos-
phorylation of receptor subunits can occur basally or in
response to particular types of synaptic activity, and
each AMPAR subunit has its own calcium and kinase
profile (Wyneken et al., 1997). In particular, the role of
GluR1 phosphorylation in synaptic plasticity has been
studied in detail (reviewed in Roche et al., 1994; see
Yakel et al., 1995). However, some phosphorylation sites
are thought to be shared by all AMPARs: a residue
between 620 and 638 of GluR1 and the equivalent sites
in all other AMPARs is phosphorylated in vitro by
CaMKII leading to enhanced responses in synaptic plas-
ticity (Yakel et al., 1995), and although most research
has centered on the role of CaMKII, it is possible that
CaMKIV may play a similar role (Kasahara et al., 2000).
There also appears to be a general role for developmen-
tal regulation of AMPAR properties by phosphorylation
(Shaw and Lanius, 1992; Li et al., 2003). Furthermore, a
GluR2 Ser 696 phosphospecific antibody helped demon-
strate phosphorylation of this and analogous sites in all
other AMPARs in response to agonist by PKC (Naka-
zawa et al., 1995a,b). This phosphorylation is thought to
underlie long-term desensitization.

In addition to modulation of AMPAR phosphorylation
in response to glutamatergic synaptic activity, PKA
phosphorylation of AMPARs, primarily GluR1, is en-
hanced by D1 dopamine receptor activation (Price et al.,
1999; Snyder et al., 2000; Chao et al., 2002) and may
play a role in Parkinson’s disease (Chase et al., 2000; Oh
et al., 2003). Indeed, dopamine receptors may influence
synaptic plasticity of AMPARs (Wolf et al., 2003) by
increasing PKA-mediated AMPAR insertion (Mangi-
avacchi and Wolf, 2004). Serotonin hydroxytryptamine
1A receptors can, on the other hand, inhibit CaMKII
phosphorylation of AMPARs (Cai et al., 2002b).

a. GluR1. GluR1 is phosphorylated at multiple sites
on the C terminus. PKC and CaMKII phosphorylate Ser
831 (Roche et al., 1996; Mammen et al., 1997), whereas
PKA phosphorylates Ser 845 (Mammen et al., 1997).
Differential phosphorylation of both sites occurs accord-
ing to activity (Blackstone et al., 1994) leading to
changes in synaptic efficacy (Fig. 2) and phosphorylation
by PKA and PKC may play a role in nociception (Fang et
al., 2003a,b; Nagy et al., 2004). Furthermore, phosphor-
ylation at both PKA and CaMKII sites controls synaptic

FIG. 2. Schematic illustrating that phosphorylation of the GluR1 AMPA receptor subunit may act as a bidirectional switch in synaptic plasticity.
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incorporation of these receptors (Esteban et al., 2003)
and may be enhanced by the constitutive activity of
phospholipase A2 (Menard et al., 2005).

AMPARs present in the postsynaptic density are
phosphorylated by CamKII, and there is evidence that
the PKA site is occluded in this location (Figurov et al.,
1993; Vinade and Dosemeci, 2000). CaMKII phosphory-
lation plays a role in synaptic unsilencing (Liao et al.,
2001) and enhancement (Figurov et al., 1993; Nishizaki
and Matsumura, 2002), ischemia (Takagi et al., 2003; Fu
et al., 2004), inflammation (Guan et al., 2004), and LTP
(Hayashi et al., 1997; of depressed synapses: Strack et
al., 1997; Lee et al., 2000) perhaps by increasing the
AMPAR-mediated current (Derkach, 2003; Vinade and
Dosemeci, 2000) and/or by modulating an interaction
between GluR1 and a PDZ-containing protein (Hayashi
et al., 2000). Interestingly, amyloid � protein prevents
the activation of CaMKII and AMPAR phosphorylation
during LTP (Zhao et al., 2004). Dephosphorylation of
this site by protein phosphatase 1 leads to depotentia-
tion (Lee et al., 2000; Vinade and Dosemeci, 2000;
Huang et al., 2001).

PKA phosphorylation leads to potentiation of homo-
meric peak current (Roche et al., 1996; Vinade and Dose-
meci, 2000) by increasing the peak open probability
(Banke et al., 2000) and leads to LTP in naive synapses
(Lee et al., 2000). Dephosphorylation occurs via a cal-
cineurin-mediated pathway (Snyder et al., 2003) and is a
feature of NMDA-dependent LTD expression at naive
synapses (Kameyama et al., 1998; Ehlers, 2000; Lee et
al., 2000; Launey et al., 2004). The interacting proteins
SAP-97 and A-kinase-anchoring protein 79 are thought
to direct basal PKA phosphorylation of GluR1 and cal-
cium-dependent dephosphorylation at this site (Colledge
et al., 2000; Lisman and Zhabotinsky, 2001; Tavalin et
al., 2002).

It is clear that the effects of GluR1 (de)phosphoryla-
tion at the major CaMKII and PKA sites on synaptic
plasticity depends on the history of the synapse (Lee et
al., 2000), and it is becoming increasingly evident that
these kinases and phosphatases play important roles in
development, synaptic plasticity, learning, and memory
(Vianna et al., 2000; Genoux et al., 2002; D’Alcantara et
al., 2003; Lee et al., 2003a; Lu et al., 2003), although a
role for GluR1 dephosphorylation in LTD maintenance
rather than induction has been postulated (Brown et al.,
2005). See Fig. 2 for a model of how the phosphorylation
state of GluR1 relates to the plastic state of the synapse.
GluR1 phosphorylation by the Src family tyrosine ki-
nase Fyn also occurs in vitro and protects the receptors
from calpain digestion which could modulate trafficking
events or channel properties (Rong et al., 2001).

b. GluR2. GluR2 is phosphorylated by PKC at Ser
880 in the PDZ binding site. This differentially regulates
binding of AMPAR binding protein (ABP)/glutamate
receptor-interacting protein 1 (GRIP1) and protein in-
teracting with C kinase (PICK)1, with a decrease in

ABP/GRIP binding but not PICK1 in response to phos-
phorylation (Matsuda et al., 1999; Seidenman et al.,
2003). Furthermore, ABP binding to GluR2 prevents
this phosphorylation (Fu et al., 2003). Phosphorylated
GluR2 has been shown to recruit PICK1 to synapses
apparently causing the release of the GluR2-PICK1 com-
plex from synapses facilitating internalization (Chung
et al., 2000; Seidenman et al., 2003) and LTD (Matsuda
et al., 2000; Xia et al., 2000; Kim et al., 2001; Chung et
al., 2003). Interestingly, cerebellar LTD has also been
shown to involve a mitogen-activated protein kinase
step that converts transiently phosphorylated AMPARs
to stably phosphorylated ones (Kuroda et al., 2001), and
LTD-inducing protocols lead to tyrosine phosphorylation
of GluR2 and, consequently, endocytosis of the receptors
(Ahmadian et al., 2004). Indeed, phosphorylation of Tyr
876 near the C terminus of the receptor by a src family
tyrosine kinase has a similar effect on GRIP1 and
PICK1 binding to PKC phosphorylation of Ser 880, al-
though this phosphorylation is involved in AMPA- and
NMDA-induced internalization of these receptors (Ha-
yashi and Huganir, 2004). Furthermore, potential PKC
phosphorylation sites have also been identified in the C
terminus of GluR2, including Ser 863 (Hirai et al., 2000;
McDonald et al., 2001).

c. GluR3. There has been no systematic study into
the regulation of GluR3 subunit phosphorylation.

d. GluR4. Recombinant homomeric GluR4 is the
most rapidly desensitizating of the AMPARs, a property
that may be regulated by (de)phosphorylation. This sub-
unit is phosphorylated by PKC in response to activation
of the kinase/receptor (Carvalho et al., 2002). PKC di-
rectly interacts with the membrane-proximal C termi-
nus of the receptor, phosphorylating at Ser 482, and
leading to increased surface expression of recombinant
receptors (Correia et al., 2003; Esteban et al., 2003), and
Thr 830 is also a potential PKC site (Carvalho et al.,
1999). Ser 842 can be phosphorylated by PKA which
modulates surface expression of the receptor (Gomes et
al., 2004).

F. Expression Patterns

1. Regional Distribution in the Brain. In situ hybrid-
ization studies (Keinanen et al., 1990; Pellegrini-
Giampietro et al., 1991), receptor autoradiography using
[3H]AMPA and [3H]glutamate (Monaghan et al., 1984),
and immunocytochemistry using antibodies directed
against individual AMPAR subunits (Petralia and
Wenthold, 1992; Martin et al., 1993) demonstrated the
widespread and varied distribution of AMPARs in the
brain (reviewed in Hollmann and Heinemann, 1994).
The hippocampus, outer layers of the cortex, olfactory
regions, lateral septum, basal ganglia. and amygdala of
the CNS are enriched in GluR1, GluR2, and GluR3
(Keinanen et al., 1990; Beneyto and Meador-Woodruff,
2004). In contrast, GluR4 mRNA and immunolabeling is
low to moderate throughout the rat CNS, except in the
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reticular thalamic nuclei and the cerebellum where lev-
els are high (Petralia and Wenthold, 1992; Martin et al.,
1993; Spreafico et al., 1994).

2. Neuronal and Glial Expression. Interestingly,
AMPARs have also been found on glial cells (Gallo and
Russell, 1995; Garcia-Barcina and Matute, 1998; Jans-
sens and Lesage, 2001), where they appear to be in-
volved in excitotoxicity (Yoshioka et al., 1996; Park et
al., 2003) and ischemia pathology (Gottlieb and Matute,
1997; Meng et al., 1997). Activation of these receptors on
some glia can lead to the release of ATP or nitric oxide,
which may act as autocrine or paracrine messengers
(Queiroz et al., 1999; Comoletti et al., 2001) and can
affect glial morphology (Ishiuchi et al., 2001). It has
recently been demonstrated that mouse hippocampal
astrocytes may be categorized into AMPAR-expressing
cells or glutamate transporter cells, which adds yet an-
other layer of complexity (Wallraff et al., 2004). Glia-glia
coupling (Muller et al., 1996) and neuron-glia signaling
is an emerging area of interest in this field, with work
centering on the Bergmann glia of the cerebellum (Men-
nerick et al., 1996; Clark and Barbour, 1997; Iino et al.,
2001; Dziedzic et al., 2003; Millan et al., 2004). Indeed, it
appears to be possible to induce a form of LTP in cere-
bellar glia by stimulating neighboring neurons (Linden,
1997), and a form of epilepsy appears to be coupled to a
change in AMPAR splice variant expression in hip-
pocampal glia (Seifert et al., 2002). It has been proposed
that neuron-glia signaling in the hypothalamus may
also control sexual development (Dziedzic et al., 2003).

3. Developmental Regulation. AMPAR mRNA can be
detected at very early stages of development. In embry-
onic rat brain, GluR2 mRNA is near ubiquitous, with
GluR1, GluR3, and GluR4 more differentially expressed
(Monyer et al., 1991). GluR1 protein was found in rat
brain as early as E15.5 and GluR4 at E11 in mouse brain
(Durand and Zukin, 1993; Martin et al., 1998). Later in
development, studies on postnatal tissue have suggested
that expression levels of GluR1–4 increase gradually,
concurrent with synapse development, and appear to
peak in the third postnatal week (Insel et al., 1990;
Pellegrini-Giampietro et al., 1991; Durand and Zukin,
1993; Standley et al., 1995; Arai et al., 1997; Martin et
al., 1998). However, immunoreactivity to GluR4 in rat
brain was not apparent until P14, after which its levels
of immunoreactivity increased gradually until adult-
hood (Hall and Bahr, 1994). Developmental changes in
the expression levels of AMPARs in hippocampal orga-
notypic slice cultures (Fabian-Fine et al., 2000) and liv-
ing cultured hippocampal neurons have also been re-
ported (Pickard et al., 2000; Molnar et al., 2002),
concluding that maturation of synapses may be retarded
in vitro. AMPAR expression is also developmentally reg-
ulated in the spinal cord (Jakowec et al., 1995; Kalb and
Fox, 1997), the visual system (Silveira dos Santos Bre-
dariol and Hamassaki-Britto, 2001; Batista et al., 2002;
Hack et al., 2002), and the auditory system (Sugden et

al., 2002). During neonatal development, AMPAR incor-
poration into the plasma membrane occurs prior to syn-
aptogenesis when GluR1-containing AMPARs cluster at
potential postsynaptic sites (Martin et al., 1998). As well
as developmental regulation of receptor subunit expres-
sion, splicing of AMPARs changes during development
(Monyer et al., 1991; Tonnes et al., 1999), as can the
kinetics of channel opening (Koike-Tani et al., 2005;
Wall et al., 2002). The Ca2�-permeability of some glia
also appears to be developmentally regulated (Backus
and Berger, 1995).

4. Subcellular Expression Patterns. Subcellular frac-
tionation experiments have indicated an enrichment of
AMPARs in both synaptic membrane and postsynaptic
density preparations (Rogers et al., 1991; Blackstone et
al., 1992; Archibald and Henley, 1997). For a diagram of
the morphology of an excitatory synapse at the electron-
micrograph level, please see Fig. 3. Microscopy con-
firmed these findings in many brain areas (Petralia and
Wenthold, 1992; Craig et al., 1993; Baude et al., 1994;
Spreafico et al., 1994; Petralia et al., 1997). However,
some AMPARs have also been detected extrasynapti-
cally and within the cytoplasm of individual neurons
(Baude et al., 1994, 1995). Consistent with this observa-
tion, a large number of intracellular AMPARs have been
identified by biochemical studies (Barnes and Henley,
1993; Hall and Soderling, 1997; Hall et al., 1997; Lee et
al., 2001). Overall, these studies suggest 60 to 70% of the
total AMPAR population is intracellular. As discussed in
more detail below, it has been speculated that this in-
tracellular pool of AMPARs may play a role in synaptic
plasticity and development via the “silent synapse” hy-
pothesis.

G. Plasma Membrane Distribution of AMPA Receptors

1. Postsynaptic Membrane. It is well established that
AMPARs reside in the postsynaptic compartment and
that their appropriate targeting and clustering in this
region is critical for the formation and maintenance of
excitatory synapses. The mechanisms of receptor inser-
tion and removal at the postsynaptic membrane and of

FIG. 3. Electron micrograph and corresponding diagram depicting a
single excitatory synapse. The electron dense PSD directly opposes the
neurotransmitter release sites located on the presynaptic bouton and the
spine neck and spine apparatus are clearly defined (reproduced with
permission from Fischer et al., 2000).
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incorporation and maintenance in functional clusters
within the postsynaptic density have been the topics of
intensive research (Nusser, 2000; Savtchenko et al.,
2000; Sheng, 2001; Franks et al., 2003). The interactions
between AMPARs and many accessory proteins are of
critical importance in these trafficking steps, and inser-
tion and removal of synaptic AMPARs plays an impor-
tant role in synaptic plasticity (Lu et al., 2001a). These
interactors will be discussed later in the review.

GluR2/3 and GluR4 subunits colocalize throughout
the postsynaptic density in the rat organ of Corti, with
higher concentrations of receptors located around the
periphery of the PSD. These subunits were not detected
at extrasynaptic membranes, but some GluR4 subunits
appeared to be presynaptic (Matsubara et al., 1996).
This suggests that AMPARs are inserted into the
postsynaptic membrane in a very precise manner and
that receptor density increases upon moving away from
the center of the synapse. In the rat hippocampus, it was
estimated that there were 3 to 140 individual AMPAR
present at synapses on CA3 pyramidal spines (Nusser et
al., 1998). However, more recent investigations into the
relationship between spine morphology and AMPAR dis-
tribution suggest that different types of spines contain
differing amounts of AMPARs (Matsuzaki et al., 2001).
In addition to the differential expression of AMPAR
subunits within and between brain regions (McBain and
Dingledine, 1993; Hack et al., 2001), AMPARs of differ-
ent composition may be targeted to different synapses
within a single cell (Rubio and Wenthold, 1997) or the
distribution of AMPARs inside a neuron may be heter-
ogeneous (Andrasfalvy and Magee, 2001).

It has been shown that the abundance of postsynaptic
AMPARs correlates with both the size of the synapse
and the dimensions of the dendritic spine head (Matsu-
zaki et al., 2004). These findings suggest that silent
Schaffer collateral-commissural (SCC) synapses (see be-
low) are smaller than the majority of SCC synapses at
which AMPA and NMDARs are colocalized and that
synapse size may determine important properties of
SCC synapses (Takumi et al., 1999). Furthermore,
NMDAR activation has been reported to cause the for-
mation of new spines as well as synaptic delivery of
AMPARs and perhaps is involved in the mechanism of
LTP (Shi et al., 1999). Recently, it has been reported
that the N-terminal domain of GluR2 increases spine
size and density in hippocampal neurons suggesting
that, in addition to being involved in rapid neurotrans-
mission, GluR2 is important for spine growth and/or
stability (Passafaro et al., 2003).

2. Extrasynaptic AMPA Receptors. Electrophysi-
ological experiments indicate that AMPARs are widely
distributed throughout the cell surface plasma mem-
brane. However, antibody surface labeling of neurons
indicates that surface-expressed AMPARs do not have a
homogenous distribution. Typically, distinct immuno-
positive areas are observed that are thought to corre-

spond to synaptic puncta. This discrepancy may be ex-
plained if nonsynaptic AMPARs are present at an
insufficient density to be detected efficiently by immu-
nocytochemistry.

Recent studies have focused on the mechanisms of
receptor recruitment to the plasma membrane, incorpo-
ration of receptors into the synapse, and their cluster-
ing, both during synaptogenesis and synaptic plasticity
(for example, see Cottrell et al., 2000; Andrasfalvy and
Magee, 2004). This will be discussed in more detail in
the trafficking sections below.

3. Presynaptic Terminal. The investigation into pre-
synaptic AMPARs has not received much attention to
date. Nonetheless, some years ago it was reported that
AMPA increased glutamate release from rat hippocam-
pal synaptosomes. This effect was shown to be related
specifically to AMPARs and suggests that AMPARs are
present on presynaptic terminals and that they may
play a role in the regulation of neurotransmitter release
(Barnes et al., 1994). It has also been shown that the
movement of axonal filopodia is strongly inhibited by
glutamate and requires the presence of axonal AMPA/
kainate glutamate receptors (Chang and De Camilli,
2001). Furthermore, functional GluR1 and GluR2 are
expressed in axonal growth cones of hippocampal neu-
rons (Martin et al., 1998; Hoshino et al., 2003), and a
pool of presynaptic AMPAR subunits have also been
isolated biochemically (Pinheiro et al., 2003; Schenk et
al., 2003).

II. Trafficking of AMPA Receptors

A. Assembly

Each mature AMPAR is assembled from four individ-
ual subunits (Wu et al., 1996; Mano and Teichberg,
1998; Rosenmund et al., 1998; Safferling et al., 2001),
although early work had indicated that the receptors
may be pentamers (Ferrer-Montiel and Montal, 1996).
Assembly is thought to occur through dimer pairing
(Armstrong and Gouaux, 2000; Ayalon and Stern-Bach,
2001; Mansour et al., 2001; Robert et al., 2001). The
early stages of assembly may be mediated by the proxi-
mal extracellular N-terminal domain of the subunits
(Leuschner and Hoch, 1999; Ayalon and Stern-Bach,
2001; Horning and Mayer, 2004), but involvement of
other regions, such as the membrane region and S2
portion, could also be necessary for formation of the
mature tetrameric receptor (for differing viewpoints, see
Wells et al., 2001; Pasternack et al., 2002).

Functional assembly of AMPAR subunits expressed in
mammalian cells or Xenopus oocytes is selective, with no
association with kainate or NMDAR subunits (Brose et
al., 1994; Leuschner and Hoch, 1999), although coassem-
bly with the orphan GluR�2 with GluR1 and GluR2 has
been reported (Kohda et al., 2003). The stoichiometry of
the receptor complexes in these systems seems to be
largely controlled by the expression levels of individual
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subunits, and it remains to be determined what pro-
cesses govern assembly in neurons, especially since the
type of complex can vary dramatically between synapses
on a single neuron. Evidence that GluR2 is the preferred
binding partner of GluR1 during heteromeric receptor
assembly was uncovered by Mansour et al. (2001) in an
elegant study involving physiological tagging of recom-
binant subunits and modeling of the results. They sug-
gest that mature receptors are composed of a dimer of
heteromers (i.e., that a GluR1/2 dimerizes with another
GluR1/2), not a pair of homomers, and that they are
arranged with identical subunits on opposite sides of the
pore and not side by side, the stoichiometry and spatial
arrangements of subunits affecting the phenotype. How-
ever, assembly of homomeric receptors is a stochastic
process. Furthermore, recent studies in GluR2 knockout
mice reported AMPAR complexes comprising abnormal
heteromers of GluR1 and GluR3 as well as increased
numbers of GluR1 and GluR3 homomers (Sans et al.,
2003) with less efficient synaptic expression. This con-
firms that GluR2 is the preferred subunit partner in the
assembly process and that it is important for synaptic
expression of AMPARs.

There is considerable evidence that the subunit com-
position of functional AMPARs at specific synapses can
change rapidly in response to synaptic activation (Shi et
al., 2001; Liu and Cull-Candy, 2002; Lee et al., 2004),
possibly due to targeted delivery of specific AMPAR
complexes or subunit rearrangement of existing recep-
tors in the spine. For example, it was observed that
AMPARs containing only long C-terminal tails (i.e.,
GluR1) require plasticity-inducing synaptic activity for
delivery to synapses, and those containing only short
tails (i.e., GluR2/3) are constitutively expressed there
(Ehrlich and Malinow, 2004). An attractive but as yet
untested hypothesis is that binding of interacting pro-
teins could favor the assembly of certain subunit combi-
nations and prevent or disfavor others.

B. Visualizing AMPA Receptor Translocation

The isolation of green fluorescent protein (GFP) and
its variants has enabled the experimenter to label cell
structures and proteins for use in microscopy. For exam-
ple, the morphology of neurons expressing GFP can be
visualized using confocal microscopy, down to the shape
and size of individual spines (Fig. 4). GFP-tagged
AMPAR subunits may be expressed in neurons using a
variety of techniques, and this approach has provided
new insight into trafficking (Sheridan et al., 2002; Ashby
et al., 2004), e.g., by viral transfer (Okada et al., 2001).
For example, tetanic stimulation of hippocampal slice
cultures causes the rapid NMDAR-dependent delivery of
GFP-GluR1 into dendritic spines (Shi et al., 1999). GFP-
labeled subunits have also been visualized in combina-
tion with electrophysiological tagging, where the chan-
nel rectification properties of recombinant AMPARs
comprising specific subunits are altered by point muta-

tions, e.g., GluR2 (R586Q)-GFP. Furthermore, expres-
sion of GFP-tagged AMPAR subunits in knockout mice
has been used to “rescue” the wild-type phenotype, giv-
ing an insight into the cell biology of GluR1-containing
heteromers (Mack et al., 2001). Using these approaches,
it has been proposed that there are differential targeting
mechanisms for AMPARs comprising either GluR1/
GluR2 or GluR2/GluR3 subunit combinations (for exam-
ple, see Hayashi et al., 2000). More specifically, GluR1/
GluR2 receptors are added to synapses during plasticity
via interactions between GluR1 and group I PDZ domain
proteins, and CaMKII and LTP drive the synaptic ex-
pression of GluR1-containing AMPARs. In contrast,
GluR2/GluR3 receptors replace existing synaptic recep-
tors in a constitutive manner dependent on interactions
between GluR2 with N-ethylmaleimide-sensitive factor
(NSF) and group II PDZ domain proteins (Shi et al.,
2001; Malinow and Malenka, 2002).

Direct visualization of the intracellular transport of
AMPARs using dispersed cultures of hippocampal neu-
rons expressing GFP-GluR1 and GFP-GluR2 showed in-
tracellular GFP-tagged AMPARs are widely distributed
throughout the somatodendritic compartment (Peres-
tenko and Henley, 2003). No evidence for intracellular
clusters of receptors either in the soma or the dendrites
was observed, suggesting the relatively free transloca-
tion of AMPARs in the soma and dendrites of neurons.
AMPARs appear to be transported at rates comparable
with fast axonal transport and move in a predominantly,
but not exclusively, proximal to distal anterograde di-
rection. Further data suggest that the intracellular
transport of GFP-GluR1-containing AMPARs is not ac-
tivity regulated but that various subunit combinations
of the receptor complex are likely to be translocated
throughout the soma and dendrites. Synapses may then
“capture” these passing receptors as and when required
(Perestenko and Henley, 2003). Furthermore, live imag-
ing of GluR2 tagged with a pH-sensitive version of GFP
that allows visualization of surface receptors only at the
working (high) pH (pHlorin) demonstrated that extra-
synaptic AMPARs containing the modified subunit react
differently to the application of NMDA to synaptic re-
ceptors. The extrasynaptic receptors were internalized
more quickly than those contained within the synapse
(Ashby et al., 2004). This data confirms the model

FIG. 4. 3D reconstruction of confocal image stack showing an area of
spiny dendrite from a cultured pyramidal hippocampal neuron express-
ing a variant of GFP. The surface rendering of this reconstruction allows
clear visualization of the varied structure of different spines (reproduced
courtesy of Dr. M.C. Ashby, MRC Centre for Synaptic Plasticity, Univer-
sity of Bristol). Scale bar 4 �m.
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whereby extrasynaptic (or juxtasynaptic) receptors are
more mobile than their synaptic counterparts, also dem-
onstrated by particle tracking experiments (see below).

C. Lateral Diffusion of AMPA Receptors in the
Membrane

Although the majority of interest in AMPAR dynamics
has focused upon mechanisms of endo- and exocytosis,
particularly with regard to plasticity, an increasing body
of evidence suggests that diffusion within the postsyn-
aptic membrane must account at least in part for some
AMPAR movement (reviewed in Choquet and Triller,
2003). First, upon activation, AMPARs dissociate from
their membrane anchors and diffuse away from the syn-
apse prior to entering the constitutive endocytotic path-
way, which is initiated either at the edge of the PSD or
further afield in the extrasynaptic membrane (Zhou et
al., 2001a). Second, studies involving stargazin suggest
that the protein may recruit AMPARs from extrasynap-
tic to synaptic sites by binding synaptic PSD-95, then
trapping freely diffusing AMPARs from outside the PSD
(Chen et al., 2000; Schnell et al., 2002).

It is unsurprising that new research has centered on
the kinetics of receptor movement during lateral diffu-
sion in the neuronal plasma membrane. Interacting mol-
ecules outside, inside, and within the membrane can
modulate receptor movement, and the subsynaptic cy-
toskeleton appears to be spatially organized into “cor-
rals”, for example, rafts that limit diffusion of receptors
within certain boundaries (Choquet and Triller, 2003).

Recently, innovative imaging methods involving
single-particle tracking have permitted the study of the
movement of a single AMPA receptor in the plasma
membrane by the attachment of a specific fluorophore-
conjugated antibody (Borgdorff and Choquet, 2002).
GluR2-containing receptors appear confined to the re-
gions surrounding the synapse, and their movement is
controlled by basal neuronal activity. GluR2 diffusion
ceased after influx of calcium, such as that observed
after membrane depolarization, and the receptor ap-
peared tethered. Increased Ca2� levels may therefore
change receptor binding to scaffolding proteins, stabiliz-
ing the receptor. This method was used to demonstrate
that a proportion of AMPARs are able to exchange rap-
idly between synaptic and juxtasynaptic sites and that
this diffusion is regulated (Tardin et al., 2003). This
process may also be involved in synaptic plasticity mech-
anisms (Groc et al., 2004). While this study concentrated
on the GluR2 subunit, tracking of other AMPAR species
would be invaluable for establishing if differential move-
ment took place in line with evidence gained from other
studies (Passafaro et al., 2001; Shi et al., 2001).

D. AMPA Receptor Delivery to Synapses

The mechanisms by which AMPARs are brought to
and inserted at the postsynaptic membrane represent a
major research interest for many workers in the field. In

particular, the activity-dependent components of this
regulation which underlie changes in synaptic plasticity
are an intensely studied area of neuroscience. In es-
sence, there are two basic processes by which AMPARs
could be delivered to the correct postsynaptic location:
direct exocytosis of receptors to the site of action, or
insertion into the membrane at a separate location with
subsequent diffusion to the PSD. In fact, evidence to
date suggests that both mechanisms can occur.

Single-particle tracking and video microscopy of the
lateral membrane mobility of native AMPARs contain-
ing GluR2 in rat-cultured hippocampal neurons re-
vealed that AMPARs alternate between rapid diffusive
and stationary behavior. In older neurons, the station-
ary periods increased in frequency and length and were
usually associated with synaptic sites. Increasing intra-
cellular calcium causes rapid receptor immobilization
and local accumulation on the surface, suggesting that
calcium influx can inhibit AMPAR diffusion and that
lateral receptor diffusion to and from synapses is impor-
tant for the regulation of receptor numbers at synapses
(Borgdorff and Choquet, 2002; Choquet and Triller,
2003). Using different methods, it has also been reported
that surface insertion of GluR1 occurs slowly in basal
conditions and is stimulated by NMDA receptor activa-
tion, whereas GluR2 exocytosis is constitutively rapid.
In addition, GluR1 and GluR2 show different spatial
patterns of surface accumulation, consistent with GluR1
being inserted initially at extrasynaptic sites and GluR2
inserted more directly at synapses (Passafaro et al.,
2001; Gomes et al., 2003; Sheng and Hyoung Lee, 2003).

E. AMPA Receptor Turnover at Synapses

In the past, it was generally accepted that AMPARs
within the postsynaptic membrane are relatively static,
at least under basal conditions, with a constitutive turn-
over of surface-expressed receptors in the order of hours
to days (Archibald et al., 1998; Huh and Wenthold,
1999). However, electrophysiological recordings pre-
dicted a more rapid emergence of AMPARs to the cell
surface, such as that seen during the acquisition of
AMPARs at silent synapses (Luscher et al., 1999; Kim
and Lisman, 2001). Evidence that receptor internaliza-
tion may also occur with equal rapidity was initially
gathered during experiments involving blockade of the
GluR2-NSF interaction (Nishimune et al., 1998; Song et
al., 1998). However, as set out below, it was discovered
that GluR2-containing AMPARs undergo rapid NSF-
dependent cycles of internalization and reinsertion into
the postsynaptic membrane with a half-life in the order
of a few minutes. The principle of rapid NSF-dependent
recycling has also been extended to G-protein-coupled
receptors via �-arrestins (Miller and Lefkowitz, 2001)
and GABAA receptors via GABA receptor-activating pro-
tein (Kittler et al., 2001), suggesting that this may be an
important general regulatory synaptic mechanism.
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The involvement of AMPAR interactors in receptor
cycling has now been extensively studied (Ehlers, 2000;
Osten et al., 2000; Ehrlich and Malinow, 2004; Lee et al.,
2004; Nakagawa et al., 2004) and has had major impli-
cations for understanding the cellular processes under-
lying synaptic plasticity (for review, see Collingridge
and Isaac, 2003; Collingridge et al., 2004; Lee et al.,
2004). The application of glutamate to cultured hip-
pocampal neurons causes a significant reduction in
AMPARs, but not NMDARs from synaptic sites (Lissin
et al., 1999), supporting the hypothesis that dynamic
movement of AMPARs occurs in response to spontane-
ous synaptic activity. Subsequent work demonstrated
that loss of AMPARs from synapses can also be pro-
moted by NMDA, AMPA, insulin, or mGluR receptor
activation (Carroll et al., 1999; Lin et al., 2000; Snyder et
al., 2001; Ehlers, 2003; Lee et al., 2004).

Several studies have focused on identifying the molec-
ular basis of AMPAR cycling at the postsynaptic mem-
brane. Increasing synaptic activity has been shown to
cause a decrease in the number of surface-expressed
AMPARs and size of AMPAR clusters in cultured neu-
rons (Lissin et al., 1999). The internalization of GluR2-
containing AMPARs and subsequent targeting for lyso-
somal degradation can be triggered by NMDA receptor
activation and is mediated through the formation of
clathrin-coated pits (Carroll et al., 1999; Ehlers, 2000;
Lee et al., 2004). Furthermore, GluR2-containing recep-
tors are internalized and recycled in response to the
application of AMPA (Lee et al., 2004), but probably only
in a subset of synapses as miniature excitatory postsyn-
aptic currents decrease in frequency but not size (Carroll
et al., 1999; Lissin et al., 1999; Beattie et al., 2000).
GluR2 appears to be the dominant subunit when decid-
ing the fate of internalized receptors, with GluR3 ho-
momers being constitutively targeted to lysosomes and
GluR1 homomers being continually recycled, and the
GluR2-NSF interaction is important for the correct tar-
geting of these receptors (Lee et al., 2004). These find-
ings are in contrast to those of Ehlers, perhaps because
of the different use of tetrodotoxin in these investiga-
tions (Ehlers, 2000; Lin et al., 2000). Similar results
have also been reported for the effects of AMPA and
insulin stimuli on the fate of internalized receptors (Lin
et al., 2000).

F. Trafficking, Learning, and Memory

Changes in surface-expressed receptor populations
are mirrored in LTD. Consistent with the synaptic loss
of strength observed electrophysiologically, LTD, in
part, is caused by the NMDA receptor-induced internal-
ization of synaptic AMPARs (Carroll et al., 1999; Beattie
et al., 2000) and shares a common mechanism with
clathrin-mediated endocytosis (Man et al., 2000; Wang
and Linden, 2000). It has also been shown that the
clathrin adaptor protein (AP)2 associates with GluR2 in

a similar region to that of NSF and is required for
NMDA-dependent LTD (Lee et al., 2002b).

Research has also focused upon the intracellular sig-
naling cascades that trigger the removal of AMPARs
from the surface. NMDA-dependent LTD appears to re-
quire the activation of a calcium-dependent protein
phosphatase cascade involving calcineurin and protein
phosphatase I (PPI) (Lisman, 1989; Mulkey et al., 1993,
1994). Specific inhibition of calcineurin appears to block
NMDA-dependent internalization as well as that which
is observed after application of AMPA or insulin (Beattie
et al., 2000; Ehlers, 2000; Lin et al., 2000). The situation
is less clear when PPI is inhibited. Endocytosis has been
reported to be both blocked (Ehlers, 2000) and enhanced
after pharmacological inhibition of PPI (Beattie et al.,
2000; Lin et al., 2000), although different techniques
were employed in each set of experiments. More re-
cently, roles for the small GTPases Ras, Rap, and Rab5
have been reported for AMPAR trafficking and synaptic
plasticity. Both Rap and Rab5 are thought to mediate
the activity-dependent removal of AMPARs during LTD
expression, with Rap removing short-tail subunit-con-
taining AMPARs and Rab5 involved in the clathrin-
dependent removal of GluR1- and GluR2-containing
AMPARs from synapses (Zhu et al., 2002; Brown et al.,
2005). Conversely, Ras has a role in activity-dependent
long-tail AMPAR insertion and may play a role in LTP
(Zhu et al., 2002). Future work will no doubt focus on
linking the induction mechanisms of synaptic plasticity
to the functional up- or down-regulation of the AMPAR
number at synapses.

A cellular mechanism for learning and memory was
initially hypothesized by Bliss and Lomo (1973) who
demonstrated that, in the rabbit hippocampus, repeated
high frequency electrical stimulation resulted in a
strengthening of synaptic transmission in target cells.
This “long-term potentiation” of transmission after such
a short period of stimulation was expressed as an exper-
imental phenomenon in which “the coincident activation
of a pre and postsynaptic neuron resulted in a long-
lasting increase in synaptic strength” (Bliss and Col-
lingridge, 1993). It was hypothesized that this endur-
ance of transmission could be the underlying mechanism
of learning and memory. The transition from observing
such occurrences to unraveling the cellular mechanisms
beneath them has led to a huge field of investigation,
much of which centers on the modulation of synaptic
AMPARs.

As already described, the synaptic expression of func-
tional AMPARs is highly regulated both during develop-
ment and by neuronal activity. Furthermore, an impor-
tant characteristic of glutamatergic synapses is that
they can exhibit NMDAR responses in the absence of
functional AMPARs, and because of the magnesium
block of NMDARs at resting membrane potentials, these
postsynaptic membranes are functionally inactive or si-
lent (Isaac et al., 1995; Liao et al., 1995). Silent synapses
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contain NMDARs but no AMPARs (Liao et al., 1999;
Petralia et al., 1999; Pickard et al., 2000), and AMPARs
can be recruited to these synapses within minutes by
either spontaneous or stimulated NMDAR activation
(Fitzjohn et al., 2001; Liao et al., 2001; Lu et al., 2001a;
Pickard et al., 2001). The “unsilencing” of such synapses
by the rapid insertion of functional AMPARs is likely to
be a key determinant for NMDAR-dependent synaptic
plasticity and neuronal development (Durand et al.,
1996). The role of AMPAR trafficking in synaptic plas-
ticity is a matter of intense investigation and has been
reviewed extensively (Henley, 2003; Malenka, 2003;

Sheng and Hyoung Lee, 2003). Aspects of current re-
search are discussed elsewhere, since they relate to spe-
cific interacting proteins and phosphorylation events in-
volved in exo- and endocytosis (Fig. 5).

III. Interacting Proteins

The regulation of AMPAR surface expression is un-
doubtedly a complex process that requires multiple pro-
tein interactions (Fig. 5). Many different proteins inter-
act selectively with individual AMPAR subunits and can
be divided into PDZ domain and non-PDZ domain-con-

FIG. 5. Simplified schematic diagram illustrating the protein interactions at GluR1 and GluR2 containing AMPA receptors.
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taining proteins (Ziff, 1997; Henley, 2003). Furthermore,
a comparative study in macaques into the expression
patterns of AMPARs and their interaction partners has
addressed whether some of these interactions are rele-
vant in higher mammals (Srivastava et al., 1998; Sriv-
astava and Ziff, 1999).

A. PDZ-Containing Proteins

PDZ domains are modular protein interaction motifs
that bind in a sequence-specific fashion predominantly
to short C-terminal peptides, but also to internal pep-
tides that fold into a �-finger or to other PDZ domains
(reviewed in Sheng and Sala, 2001; Hung and Sheng,
2002). The acronym PDZ is derived from the three pro-
teins first identified as containing this motif, namely
PSD-95/SAP90, the Drosophila discs large tumor sup-
pressor gene Dlg-A, and an epithelial tight junction pro-
tein ZO-1 (Woods and Bryant, 1991; Cho et al., 1992;
Itoh et al., 1993). PDZ domain-containing proteins are
characteristically involved in the assembly of supramo-
lecular structures that can perform specific signaling
tasks at particular cellular locations, for example, the
subcellular targeting of receptor subunit complexes to
the cell surface (for reviews, see O’Brien et al., 1998;
Garner et al., 2000). The motif has been found both as a
single domain and in a repeated format in different
proteins (Ponting and Phillips, 1995; Songyang et al.,
1997). Evidence of variable sequences encoding for
amino acids lining the peptide binding groove of the
domain reflects the diverse nature of PDZ interactions
and their functional roles (Bezprozvanny and Maximov,
2001).

1. PDZ Architecture. PDZ domains exhibit a similar
architecture throughout the range of proteins within
which they are found (Doyle et al., 1996). Each PDZ
domain binds only one ligand. A carboxylate-binding
loop with the conserved sequence R/K-XXX-GLGF (X �
any residue) ensures that the terminal carboxylate
group of the peptide ligand is orientated in the correct
fashion along the binding groove. Specific selectivity of
PDZ motifs for different binding peptides is thought to
be dependent upon small changes in the size and geom-
etry of the hydrophobic pocket.

PDZ domains may be classified according to their
specificity for C-terminal peptides. Each class of PDZ
domain has been identified as recognizing a specific
consensus sequence of the last four amino acids of the
C-terminal peptide. Class I PDZ domains recognize ei-
ther the sequence X-S/T-X-L or X-S/T-X-V, for example,
the C terminus of NMDAR2a by PSD-95 (exact sequence
E-D-D-V; Doyle et al., 1996). Class II domains recognize
the sequence X-�-X-� where X � unspecified amino acid
and � � hydrophobic amino acid. Within this class are
the PDZ domain-containing proteins GRIP and PICK1
which have both been shown to interact with the S-V-K-I
sequence at the extreme C terminus of GluR2 (Dong et
al., 1997; Dev et al., 1999).

Brain-derived neurotrophic factor treatment leads to
an increase in expression of PDZ-containing AMPAR
interactors SAP97, GRIP1, and PICK1 (Jourdi et al.,
2003), and the control of GRIP expression by neurotro-
phins may be involved in light adaptation (Cotrufo et al.,
2003). Although AMPARs don’t bind PSD-95 directly,
this PDZ-containing protein can drive GluR1-containing
AMPARs into synapses and is involved in LTP (DeSouza
et al., 2002). Truncation of the last 10 amino acids of
GluR2 removes the PDZ ligand and reduces synaptic
incorporation of the receptor (Dong et al., 1999; Osten et
al., 2000).

2. AMPA Receptor Binding Protein/Glutamate Recep-
tor-Interacting Protein. ABP is a relative of GRIP and
both proteins bind to the C terminus of GluR2/3 via a
PDZ domain (Dong et al., 1997). This binding site is also
shared by PICK1, and the interaction is differentially
modulated by PKC/tyrosine kinase phosphorylation of
Ser 880/Ser 876 within the ligand (Seidenman et al.,
2003). ABP and GRIP, like SAP-97, have multiple PDZ
domains and are major anchoring proteins in the
postsynaptic density. Furthermore, ABP and GRIP can
form homo- and heteromultimers via their PDZ domains
(Srivastava et al., 1998; Fu et al., 2003). Blocking the
ABP/GRIP interaction with GluR2 in cultured neurons
did not affect surface targeting or constitutive recycling
of the receptor, but prevented surface accumulation of
the receptor over time (Osten et al., 2000) and reduces
the amount of receptor internalized after AMPA stimu-
lation (Braithwaite et al., 2002).

ABP exists as two splice variants, one short (contain-
ing six PDZ domains and known as ABP-S) (Srivastava
et al., 1998; Dong et al., 1999) and one long (containing
seven PDZ domains and called ABP-L) (Wyszynski et al.,
1999). The long splice variant is sometimes confusingly
referred to as GRIP2 and can be palmitoylated (to give
pABP-L), which facilitates membrane and GluR2 asso-
ciation in spines (DeSouza et al., 2002). Its expression
pattern was found to parallel AMPARs, and immunore-
activity was detected in the postsynaptic density and at
synaptic plasma membranes (Gabriel et al., 2002). In-
terestingly, the nonpalmitoylated version of ABP-L is
intracellular (Fu et al., 2003), which points to different
sites of AMPAR anchoring according to the expression
levels of the splice variants. In addition to this, ABP
present on intracellular membranes can bind and retain
GluR2 that has been internalized and can also prevent
phosphorylation of GluR2 Ser 880 to stabilize this inter-
action (Fu et al., 2003). Immunocytochemistry studies
demonstrated that ABP is predominantly expressed by
pyramidal neurons of the neocortex, where it colocalizes
with two thirds of GluR2/3-containing puncta in spines
(Burette et al., 2001). A protein called KIAA1719 could
be the human homolog of ABP, and studies into its
expression in macaque brain suggest that overlapping
distribution with GluR2/3-containing AMPARs may be
restricted to particular areas of the forebrain and cere-
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bellum, e.g., CA3 and dentate gyrus of the hippocampus
(Beneyto and Meador-Woodruff, 2004).

GRIP is predominantly expressed in GABAergic inter-
neurons (Burette et al., 1999; Wyszynski et al., 1999),
where ABP is expressed at lower levels and expression of
these proteins is almost mutually exclusive in some syn-
apses (Dong et al., 1999; Burette et al., 2001). Differen-
tial expression was also found in the retina (Gabriel et
al., 2002). Furthermore, an interaction between GRIP
and GABA receptor-activating protein implies a role for
GRIP in GABAA receptor trafficking or stabilization
(Kittler et al., 2004).

GRIP exists as a variety of splice variants to give long
and short forms (Wyszynski et al., 1998). Full-length
GRIP has seven PDZ domains, with the fourth and fifth
domain being involved in GluR2/3 binding (Dong et al.,
1997). Interestingly, two forms of GRIP, GRIP1-a and -b
are thought to have different transcriptional start sites
resulting in potential differential palmitoylation of the
protein and hence membrane and protein interactions
(Yamazaki et al., 2001). GRIP1b, the version that can be
palmitoylated in heterologous cells, appears to be the
dominant isoform in the forebrain and cerebellum and is
soley associated with membranes. Confusingly, another
GRIP splice variant, also called GRIP1-b and DLX-in-
teracting protein, has been isolated as a truncated form
of GRIP. This protein retains the PDZ domains neces-
sary for AMPAR interaction, although one of these is
required for its function as a transcriptional coactivator
(Yu et al., 2001). Interestingly, this function can be
blocked by activation of GluR2. Another isoform of
GRIP, called GRIP1� has also been isolated and acts as
a testis-specific transcription factor (Nakata et al.,
2004). GRIP1-c is a short isoform of GRIP containing
only four PDZ domains, which can interact with GluR2/3
and is found concentrated in both GABAergic and glu-
tamatergic synapses, although this protein can also be
detected presynaptically (Charych et al., 2004).

GRIP protein is widely expressed in the brain
throughout development and can be detected early in
embryonic development, before the appearance of
AMPARs (Dong et al., 1999). This is in contrast to the
expression pattern of ABP, which parallels AMPARs
(Dong et al., 1999). Indeed, Northern blotting demon-
strated that mouse GRIP is down-regulated early in
postnatal development (Wyszynski et al., 1998). GRIP is
enriched in postsynaptic densities and is mostly associ-
ated with membranes throughout the neuron (Wyszyn-
ski et al., 1998), the intracellular version of the protein
being associated with the rough endoplasmic reticulum,
the Golgi apparatus and recycling endosomes (Burette
et al., 1999; Lee et al., 2001).

GRIP is a substrate for the Ca2�-dependent protease
calpain, and activation of this enzyme disrupts the
GluR2-GRIP interaction. Given that both LTP and LTD
have calcium dependencies, activation of calpain and the

subsequent effects on this interaction could play a role in
these phenomena (Lu et al., 2001b).

Consistent with its role as a scaffolding protein, GRIP
itself can interact with many other proteins. GRIP bind-
ing to Shank 2 could link AMPARs to mGluRs in the
cerebellum (Uemura et al., 2004), although little colocal-
ization was detected in retinal synapses (Brandstatter et
al., 2004). An interaction with liprin� links GluR2/3-
containing AMPARs to receptor tyrosine phosphatases,
GTPases, and motor proteins and may therefore modu-
late receptor trafficking and clustering, the actin cy-
toskeleton, and synaptic maturation (Wyszynski et al.,
2002; Ko et al., 2003). GRIP binding to GRIP-associated
proteins link AMPARs to activity-dependent Ras signal-
ing and trafficking events (Ye et al., 2000), as well as to
the caspase pathway (Ye et al., 2002). The interaction
with the Ephrin B receptor, a receptor tyrosine kinase,
may be involved in LTP and recruitment of cytoplasmic
GRIPs to membrane lipid rafts (Torres et al., 1998;
Bruckner et al., 1999), and an interaction with kinesin
heavy chain and microtubule-associated protein-1B may
be involved in AMPAR trafficking (Setou et al., 2002;
Seog, 2004). Furthermore, GRIP binding to the proteo-
glycan NG2 in immature glia could play a role in glial-
neuronal signaling in the immature brain (Stegmuller et
al., 2003), as well as diseases such as multiple sclerosis
and melanoma (Stegmuller et al., 2002), and an interac-
tion with Fras1 protein implicates GRIP in Fraser syn-
drome (Takamiya et al., 2004).

3. LIN-10. LIN-10 is a Caenorhabditis elegans mem-
brane-associated guanlylate kinase (MAGUK) family
protein. The human homolog, mLIN-10 or X11L can
bind directly to GluR1 via a PDZ domain interaction and
could direct trafficking of receptors containing this sub-
unit (Stricker and Huganir, 2003). Interestingly, X11L
can bind and modulate the activity of the transcription
factor NF-�B and plays a role in Alzheimer’s disease
(Tomita et al., 2000).

4. Protein Interacting with C Kinase. PICK binds to
the C terminus of GluR2 at the synapse via a PDZ
domain that is also required for PICK1 binding to active
PKC� (Dev et al., 1999; Xia et al., 1999). The role of
PICK1 binding to AMPARs may be to target this active
PKC to the receptors (Perez et al., 2001), indeed, it is
possible to differentiate between PICK1 binding to PKC
and GluR2 (Dev et al., 2004). Phosphorylation of the
PDZ ligand Ser 880 by PKC causes PICK1 to traffic to
synapses and rapid internalization of GluR2-containing
receptors, perhaps because this phosphorylation re-
leases GluR2 from GRIP1 binding (Chung et al., 2000),
but not PICK1. Similarly, phosphorylation of Tyr 876 in
the PDZ ligand differentially affects the ability of GluR2
to bind ABP/GRIP and PICK1 (Hayashi and Huganir,
2004). The PKC-dependent internalization is implicated
in cerebellar and hippocampal LTD (Matsuda et al.,
2000; Xia et al., 2000; Kim et al., 2001; Seidenman et al.,
2003), and PICK1 has been detected in recycling endo-
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somes (Lee et al., 2001). However, overexpression of
PICK1 in the hippocampus in vitro reduces the amount
of synaptic GluR2, but not GluR1, and increases synap-
tic strength at resting potentials (Terashima et al.,
2004). The PICK1-GluR2 interaction can itself be disas-
sembled by NSF and other proteins (Hanley et al., 2002),
and PICK is capable of interacting with at least an
additional 13 proteins besides GluR2 (Meyer et al.,
2004).

5. Synapse-Associated Protein-97. The SAP family of
proteins are members of the MAGUK family that con-
tain many protein interaction domains. These have un-
dergone extensive investigation and are thought to have
roles beyond anchoring and trafficking of transmem-
brane receptors (Fujita and Kurachi, 2000). SAP-97 is
the mammalian homolog of the Drosophila protein discs
large tumor suppressor protein, the human homolog of
which is often called hDlg (Lin et al., 1997). SAP-97
expression is not restricted to the central nervous sys-
tem, for example, the role of this protein in the heart and
epithelium is of interest to many researchers (Godreau
et al., 2003). In particular, the role of SAP-97 in cell-cell
contact within epithelial tissues is an extensive area of
study (Muller et al., 1995; Wu et al., 1998; Firestein and
Rongo, 2001). Within the brain, the majority of SAP-97
may be detected at the postsynaptic density, but some of
the protein can also be found cytoplasmically and pre-
synaptically (Aoki et al., 2001); indeed, it has been
shown that the protein plays a fundamental role in the
architecture of synapses (Thomas et al., 1997). The very
C terminus of GluR1 binds to the second PDZ domain of
SAP-97 via an interaction that confers specificity to this
particular AMPAR (Leonard et al., 1998; Cai et al.,
2002a). This interaction potentially allows GluR1-con-
taining AMPARs to associate with many other proteins
including PKA, PKC and calcineurin, calmodulin (Paar-
mann et al., 2002), NMDARs (Bassand et al., 1999;
Gardoni et al., 2003) and KARs (Mehta et al., 2001),
stargazin (Ives et al., 2004), guanylate kinase-activating
protein (Kuhlendahl et al., 1998; Wu et al., 2000), a
kinesin superfamily motor protein (Mok et al., 2002),
and the actin-based motor myosin VI, which plays a role
in endocytosis (Wu et al., 2002; Hasson, 2003) provided
that the interaction sites do not overlap. The interaction
with SAP-97 also promotes the stabilization and syn-
aptic incorporation of GluR1-containing AMPARs
(Valtschanoff et al., 2000; Nakagawa et al., 2004). The
Drosophila homolog of SAP-97, Dlg, with the coopera-
tion of another protein called Strabismus promotes
incorporation of proteins into newly formed plasma
membrane (Lee et al., 2003b). SAP-97 is capable of mul-
timerization with itself and other MAGUKs, which is
consistent with a role as an anchoring protein (Karnak
et al., 2002; Lee et al., 2002a; Feng et al., 2004) and
controls synaptic targeting of AMPARS (Nakagawa et
al., 2004). Synaptic targeting of SAP-97 is modulated by
CamKII (Mauceri et al., 2004), and SAP-97 itself is a

target for the kinase, which can modulate some interac-
tions (Yoshimura et al., 2002; Gardoni et al., 2003).
SAP-97 occurs as different splice variants (Mori et al.,
1998; Godreau et al., 2003). Overexpression of the syn-
aptic form increases the number of functional AMPARs
at synapses (Rumbaugh et al., 2003) and can occlude
LTP (Nakagawa et al., 2004), although NMDA-depen-
dent internalization of GluR1 doesn’t involve SAP-97
(Sans et al., 2001). The SAP-97-A-kinase-anchoring pro-
tein 79 interaction promotes basal PKA phosphorylation
of GluR1 Ser 845 and may be involved in the calcium-
dependent dephosphorylation of this residue and hence
LTD (Tavalin et al., 2002). Interestingly, blocking
NMDARs leads to an up-regulation of SAP-97 expres-
sion in some areas of the cortex (Linden et al., 2001).
Interaction with SAP-97 can occur early in the secretory
pathway (Sans et al., 2001). SAP-97 has been implicated
in cleft palate (Caruana and Bernstein, 2001), Alzhei-
mer’s disease (Wakabayashi et al., 1999), and schizo-
phrenia (Toyooka et al., 2002). SAP-97 also plays a role
in trafficking of potassium channels (Kim and Sheng,
1996; Tiffany et al., 2000; Leonoudakis et al., 2001; Folco
et al., 2004), plasma membrane Ca2�-ATPases (De-
Marco and Strehler, 2001; Schuh et al., 2003), the recep-
tor tyrosine kinase ErbB4 (Huang et al., 2002), and
interacts with tumor necrosis factor �-converting en-
zyme (Peiretti et al., 2003).

6. SemaF Cytoplasmic Domain-Associated Protein-3
and PDZ-Regulator of G-Protein Signaling-3. An inter-
action between the C terminus of GluR2 and SemaF
cytoplasmic domain associated protein-3 (a protein with
similar domains to E3 ubiquitin ligase LNX) and PDZ-
RGS3 (PDZ-regulator of G-protein signaling-3, a GTP-
ase-activating protein for trimeric G-proteins) has been
reported in the yeast two-hybrid system, the functional
implications of which are not clear (Meyer et al., 2004).

7. Syntenin. Syntenin is a protein that has been re-
ported to interact with all AMPARs in vitro, but not in
the yeast two-hybrid system. The affect of syntenin bind-
ing to AMPARs is not clear, but the interaction with
KARs has been investigated (Hirbec et al., 2002, 2003).
Syntenin is able to interact directly with the phosphati-
dylinositol biphosphate component of the plasma mem-
brane (Zimmermann et al., 2002) and with syndecans,
implicating them in cell-adhesion and synaptogenesis
mechanisms (Zimmermann et al., 2001).

8. Transmembrane AMPA Receptor Regulatory Pro-
teins. Stargazin was the first transmembrane interactor
isolated for AMPARs (Chen et al., 2000) and is the only
AMPAR interactor found associated with AMPARs in
native gel preparations of cerebellar extracts (Vanden-
berghe et al., 2005). Null mutant mice exhibit the star-
gazer phenotype of absence seizures and cerebellar
ataxia, which was attributed to the lack of functional
AMPARs in cerebellar granule cells (Chen et al., 2000;
Schnell et al., 2002). Stargazin is a member of a family
of L-type calcium channel modulatory � subunits and is
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also called �-2. Stargazin, �-3, �-4, and �-8 together form
the transmembrane AMPAR regulatory protein family
(Moss et al., 2003; Tomita et al., 2003). These proteins
are differentially expressed throughout the nervous sys-
tem, with �-4 being predominant early in development
(Tomita et al., 2003). Different TARPs may be expressed
by the same neuron, but they do not form heteromeric
complexes with each other. Furthermore, stargazin is
the only TARP expressed by cerebellar granule cells
(which explains the stargazer phenotype), and �-8 has
striking expression throughout the hippocampus,
whereas stargazin is absent from CA1 (Tomita et al.,
2003). This has implications for the differential control
of activity-dependent trafficking events in different re-
gions of the brain, for example, cerebellar and hippo-
campal LTD. TARPs comprise a conserved N-terminal
AMPAR-binding domain and a more variable C-termi-
nal PDZ binding domain that can bind to MAGUK pro-
teins, for example, PSD-95 and PSD-93 (Dakoji et al.,
2003). TARPs play a dual role in the trafficking of
AMPARs, first enabling surface expression of AMPARs
and second via interaction with PDZ proteins, facilitat-
ing synaptic incorporation of these receptors (Chen et
al., 2000). The role of PSD-95 and stargazin in functional
expression of AMPARs has been studied in the most
detail, and it transpires that the TARP-MAGUK inter-
action can be regulated by phosphorylation of the PDZ
binding site with phosphorylated stargazin being unable
to bind PSD-95, resulting in a loss of synaptic AMPAR
clusters (Chetkovich et al., 2002; Choi et al., 2002). Clus-
tering of the tertiary complex is also regulated by the
palmitoylation state of PSD-95, with activity-dependent
depalmitoylation resulting in the loss of synaptic
AMPARs (El-Husseini Ael et al., 2002). It has also been
demonstrated that TARPs, unlike AMPARs, are stable
at the plasma membrane and that agonist binding to
AMPARs results in detachment from TARPs by an allo-
steric mechanism and internalization of the receptors
(Tomita et al., 2004). The interaction between stargazin
and PSD-95 also serves to link AMPARs to NMDARs
and signaling cascades (Chetkovich et al., 2002; Lim et
al., 2003; Mi et al., 2004). Other stargazin interactors
include neuronal protein interacting specifically with
TC10, which is enriched in the Golgi and is involved in
trafficking of transmembrane proteins (Cuadra et al.,
2004) and LC2, which is involved in microtubule traf-
ficking events (Ives et al., 2004).

B. Other Interactors

1. Neuronal Activity-Regulated Pentraxin. Narp
(neuronal activity-regulated pentraxin) is a neuronal
intermediate-early gene product secreted upon synaptic
activity (O’Brien et al., 1999). Narp is enriched in a
subset of synapses within the hippocampus and spinal
cord, but unlike other AMPAR interactors, Narp is ex-
tracellular and is believed to interact with the N termi-
nus of AMPA subunits and can also form homomultim-

ers. The protein is more predominant in presynaptic
regions, with accumulation opposing excitatory syn-
apses on dendritic shafts rather than on spines. Narp is
postulated to promote aggregation of AMPARs via direct
interaction, although in neuronal models this has only
been demonstrated using exogenously applied Narp and
dominant-negative mutant experiments (O’Brien et al.,
1999, 2002). Interestingly, Narp secretion by hippocam-
pal axons may selectively target the aggregation of
AMPARs only in interneurons (Mi et al., 2002). Further
research has shown that Narp may be involved in en-
during forms of neuronal plasticity (Reti and Baraban,
2000).

2. N-Ethylmaleimide-Sensitive Factor. The interac-
tion between the C terminus of GluR2 and weaker ones
with GluR3 and GluR4c and NSF were first reported in
1998 (Nishimune et al., 1998; Osten et al., 1998; Song et
al., 1998). The interaction domain on GluR2 comprises
Lys 844-Gln 853 with Asn 851 playing a critical role, and
inclusion of a peptide with this sequence (called pep2m/r
or G10) or a monoclonal antibody against NSF blocks the
interaction and causes a decrease in functional AMPAR
responses (Noel et al., 1999). It is important to note,
however, that later studies revealed that the clathrin
adaptor protein AP2 associates with GluR2 in an over-
lapping region with NSF and that the pep2m/r peptide
also blocks this interaction (Lee et al., 2002b). Interpre-
tation of pep2m/r data must therefore proceed with cau-
tion. Because of the link between pep2m/r and a de-
crease in AMPAR responses, NSF has been suggested to
play a role in the regulated delivery or removal of
GluR2-containing AMPARs to the synapse in LTD (Lee
et al., 2004). Indeed, infusion of pep2m and the expres-
sion of de novo homosynaptic LTD in the hippocampus
are mutually occlusive (Luscher et al., 1999; Luthi et al.,
1999), although this could be due to the role of AP2 in
NMDA-dependent internalization of AMPARs and LTD
(Lee et al., 2002b). Viral expression of pep2m in cultured
hippocampal neurons led to a decrease in surface expres-
sion of AMPARs but not total levels of the receptor (Noel
et al., 1999), which can be neuroprotective (Ralph et al.,
2001), and more selective peptides have been used to
show that NSF is required for the maintenance of syn-
aptic AMPARs (Lee et al., 2002b). Blocking the NSF
interaction also leads to aberrant targeting of GluR2-
containing AMPARs after AMPA-induced and constitu-
tive internalization to the lysosomal pathway for degra-
dation, which is usually targeted only after NMDA
stimulation (Lee et al., 2004). NSF and GluR2 are also
part of a reversible complex with � and � soluble NSF
attachment proteins (Osten et al., 1998; Osten and Ziff,
1999). The identification of PICK1 as part of the func-
tional complex led to the proposal that, similar to soluble
NSF attachment protein receptor complex disassembly
presynaptically, the NSF ATPase acts to disrupt the
PICK1-GluR2 interaction postsynaptically with the aid
of soluble NSF attachment proteins (Hanley et al.,
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2002), furthering the idea that NSF acts as a stabilizer
of synaptic GluR2. A role for NSF as a modulator of
activity-dependent internalization of GluR2-containing
AMPARs is emerging, with NSF blocking the AP2 inter-
action and hence internalization. However, a role for
NSF in the constitutive cycling of GluR2/3 has also been
postulated and remains controversial (Lee et al., 2002b).
Interestingly, there appears to be a component of
AMPAR transmission that is resistant to the actions of
pep2m (Kim and Lisman, 2001), and NSF has many
more interaction partners that suggest more far-reach-
ing roles than the one discussed here (Haas, 1998).

3. 4.1. Protein 4.1 was originally isolated as a cy-
toskeletal protein in erythrocytes. A neuronal homolog
has been identified (4.1N) that exists as several splice
variants and can be detected in the postsynaptic density
of some neurons (Walensky et al., 1999). Both GluR1
and GluR4 have 4.1 binding sites in the proximal region
of their intracellular C termini (Shen et al., 2000;
Coleman et al., 2003). This interaction between 4.1 and
AMPARs is necessary for the surface expression of the
receptors, links them to the actin cytoskeleton, and is
involved in the formation of postsynaptic signaling com-
plexes.

IV. Future Directions

The immense variety and scope of current research
on AMPARs makes it almost impossible to predict
where future advances are likely to occur. Nonethe-
less, much remains to be discovered before a reason-
able working knowledge of the mechanisms underly-
ing AMPAR structure, function, and trafficking can be
assembled. One clear goal is the need for the complex-
ity surrounding the temporal and spatial arrange-
ment of AMPAR-interacting proteins to be clarified
and specific functions assigned to each. Once more
information becomes available, it seems reasonable
that one or more of these interacting proteins may
represent a potential target for the development of
specific drugs designed to counteract a loss of synaptic
AMPARs (of importance in Alzheimer’s disease)
and/or AMPAR overexpression (of importance in epi-
lepsy and excitotoxic damage). Moreover, it is conceiv-
able that eventually such drugs would be capable of
targeting AMPARs of a specific subunit composition
and possibly even specific subunit splice isoforms.
With these possibilities in mind, this area of neuro-
science promises an exciting and challenging time
ahead.

In summary, despite the highly complex series of
interactors and modulators, it seems that in the hip-
pocampus, at least, GluR2-containing AMPARS are
constitutively delivered to synapses and cycle contin-
uously (Malinow and Malenka, 2002), whereas GluR1-
containing AMPAR are inserted into synapses in re-
sponse to NMDAR activation and the subsequent

activation of CaMKII. The GluR4 subunit plays the
role of GluR1 earlier in development (Zhu et al., 2000).
This activity-dependent insertion plays a role in the
mechanism of LTP, with GluR1 being dominant over
GluR2 (Hayashi et al., 2000; Passafaro et al., 2001;
Shi et al., 2001).
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